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Abstract. A simple procedure for solving the Schrodinger equation is presented. It is based 
upon an iterative solution of the secular equation. A large enough convergence rate is 
obtained by using a basis set of properly scaled functions. The effect of the scaling parameter 
on the convergence rate is studied in order to improve the calculation. The method is 
applied to simple, though non-trivial, quantum mechanical models such as the quartic, 
sextic and octic anharmonic oscillators, a double well potential, and the linear confining 
potential. Highly accurate eigenvalues for all values of the coupling parameter are obtained. 

1. Introduction 

Burrows and Core (1984) have recently applied a technique for solving nonlinear 
operator equations iteratively to quantum mechanical calculations. To this end the 
Schrodinger equation is written as 

T Y  = A Y ) ,  (1) 

where Y belongs to the domain of a self-adjoint operator T and 
f(Y) may be nonlinear. 

exists. In general 

On solving ( 1 )  the related sequence of equations 

T*(S+') =f( +(*I), (2)  

is tried, where 

and 

( ei I Te,) = aisij, (a1 > 0). 
The sequence of functions JI'" is supposed to converge towards v' as S + C O  (see 
Burrows and Core (1984) and references therein for a more detailed discussion). 

Burrows and Core (1984) rearranged the Schrodinger equation in different ways 
and studied the effect of different choices for f(+) and N ( s )  on the convergence rate. 
However, they have not considered the influence of the basis set of functions which 
is of great practical importance. 

In the present paper a modified version of the iterative technique proposed by 
Burrows and Core (1984) is applied to some quantum mechanical problems of physical 
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interest. A basis set of properly scaled functions is used and the effect of the scaling 
parameter on the convergence rate is studied. The method is developed in 8 2 .  In 5 3 
it is applied to the anharmonic oscillators and to a double well potential model. The 
linear confining potential is discussed in Q 4. In all the cases we go further than 
Burrows and Core (1984) did and study excited states in addition to the ground state. 

2. The method 

Our goal is to solve the eigenvalue equation 

AIqn)  = EnBIqn), ( 5 )  

where A and B are two self-adjoint operators. To this end we expand the eigenvector 
IT,,) in a basis set of orthonormal vectors / i )  

The coefficients c,, are solutions of the secular equation 

A J l c l ,  = C B J l c f , 9  j = O ,  1,. . . , ( 7 )  

AIJ = ( i l  A b ) ,  B,  = ( i l B l j ) .  (8) 

I I  

where 

Notice that ( 5 )  becomes a nonlinear equation like (1 )  by setting E,  = 
( n ~ A ~ ~ , , ) / ( n ~ B \ ~ , ) .  This choice proves to be convenient when In) is an acceptable 
approximation to lYn). In the following sections we show how to obtain an appropriate 
basis set of vectors for some problems of physical interest. 

If  c,, is arbitrarily set equal to unity we can rewrite ( 7 )  as 

when j = n and 

when j # n. Equations (9) and (10) are easily solved by iteration provided that 
E, Z AJJ/ B ,  for all j f n during the process. Notice that (7)  is also the secular equation 
for HI*,,) = E n / q n )  when IT,,) is expanded in a non-orthogonal basis set of vectors 
Ii) .  In this case A,] = ( i l H l j )  and B, = ( i l J ) .  

The success of the method may strongly depend on the starting point. A sensible 
choice appears to be 

c(0) = 6 EIP' = AnnIBnn, ( 1 1 )  in tnr 

which is based upon the assumption that In) is a close enough approach to IT,). 
Instead of using the coefficients c::) obtained in the sth step to calculate cj i+'),  as 
suggested by ( 2 )  and (3), it is easier, from a computational viewpoint, to operate 
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according to the Gauss-Seidel iterative scheme: 

which proves to converge more quickly (Kuo 1965). The main advantage of doing the 
Rayleigh-Ritz calculation iteratively is that roundoff errors only occur at the final 
iteration whereas the usual eigenvalue techniques can be subject to a cumulation of 
errors. 

Though (9) and (10) are also the starting point of the Brillouin-Wigner perturbation 
formula (Morse and Feshbach 1953) the present approach differs from that in the way 
the iterative process is performed. 

When A ,  = 0 for Ii - j (  > I and B ,  = 0 for Ii - j l >  J we can write the right-hand side 
of (12) explicitly and treat A ,  and B ,  as mere numbers instead of as elements of 
matrices. In such a case much less memory space is required since only the vector 
( c ,  ,, cZn,  . . .) is to be stored up. On the other hand, in the usual eigenvalue techniques 
it is mandatory to store up the matrices A ,  and B,. Besides, the iterative procedure 
can also be used to produce analytical expressions for both the eigenvalues and 
eigenfunctions. Notice that the number of non-vanishing coefficients increases by a 
fixed amount in each iteration step. In general our sth approximation to the wavefunc- 
tion 19,) will be 

where M and the maximum s (= N )  value are determined so that results do not change 
when they are increased. If the secular equation (7) is a three-term recursion relation- 
ship (I = J = l) ,  the present procedure is similar, though not exactly equivalent step 
by step, to the continued fraction calculation. 

The iterative technique requires a good deal less computational work than the 
Rayleigh-Schrodinger perturbation theory does and it will be shown later on that the 
former converges where the latter does not. 

In this paper we do not determine rigorously the general conditions under which 
the iterative method is convergent. However, we will show that it actually converges 
at least for the low-lying eigenvalues of a number of quantum mechanical models. In 
addition to this, the effect of the chosen basis set of vectors I i )  on the convergence is 
studied. 

3. Anharmonic oscillators and double well potentials 

The first example we study in this paper is the Schrodinger equation for the one- 
dimensional Hamiltonian operator 

H 2 k ( w 2 ,  A )  = p 2 + ~ 2 ~ 2 +  p = -i dldx, k = 2 , 3 , .  . . , (14) 
which represents a 2k-anharmonic oscillator when w 2  > 0 and a double well potential 
when o2 < 0. There has been great interest in these models partly due to their applica- 
tions in quantum mechanics and field theory but mainly because of the singularities 
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of the eigenvalues of the 2k-anharmonic oscillators in the complex A plane which 
account for the divergence of the perturbation series in powers of A (Bender and Wu 
1969, Simon 1970). 

In studying the aforementioned models it is convenient to write the Hamiltonian 
operator (14) in second quantised form through the introduction of creation and 
annihilation operators a’ and a, 

x = ( g / 2 ) ” * ( a + a + ) ,  p = i(2g)-”’(a’- a ) ,  [ U + ,  a ]  = I .  (15) 

The real, positive parameter g enables one to improve convergence as will be shown 
later on. 

Our basis set of vectors / i )  will be composed of the complete set of eigenvectors 
of the particle number operator uta. This choice is equivalent to using a set of scaled 
harmonic oscillator eigenfunctions which has proved to be very useful in obtaining 
analytic expressions for the eigenvalues of the Hamiltonian operator (14) (McWeeny 
and Coulson 1948, Banerjee 1978, Dias de Deus 1982, Fernindez and Castro 1983a). 
When g is determined according to variational principles, 

(aHfl,/ag)(g = gv) = 0, (16) 

the scaled trial functions obey the virial theorem (Fock 1930, Lijwdin 1959). Besides, 
the basis set of scaled functions built this way has also proved to be suitable for 
Rayleigh-Ritz calculations (Lu and Nigam 1969, Reid 1970, Balsa et a1 1983) and for 
other non-perturbative approaches (Banerjee 1978, Banerjee et a1 1978). The major 
attraction of the variational condition (16) is that H,,(g) is given a dependence on n 
(quantum number) and A that closely resembles the exact one (McWeeny and Coulson 
1948, Banerjee 1978, Dias de Deus 1982, Fernandez and Castro 1982a). 

If H is split into a zeroth-order operator Ho containing all the terms that commute 
with u t a  and a perturbation V = H - Ho, we are led to a recently developed and quite 
promising variational perturbative scheme (Feranchuk and Komarov 1982, Gerry and 
Silverman 1983, Yamazaki 1984). If g = g, a very few perturbation terms yield quite 
accurate results. However, it has been recently shown that the use of g, is not convenient 
wheh large-order perturbation calculations are required because it leads to divergent 
power series (Fernandez et a1 1984). A numerical investigation has revealed that there 
is an interval of g values for each A and n leading to convergent series and that g, 
usually lies outside it (Fernandez et a1 1984). This fact will be exploited in the present 
paper to make the iterative procedure converge quickly enough. 

In order to obtain the matrix elements H,, we first put the Hamiltonian operator 
(14) in second quantised form and then make use of the well known relationships 

alii = i ’ ’21i - I), a + l i ) = ( i + l ) ” * / i +  1). (17) 
On doing it we are led to a particular case of (7) where A,] = H ,  and R, = S,]. Notice 
that H,] = 0 if Ii - j l>  2k. Since the calculation of the matrix elements is straightforward, 
it is not necessary to give them explicitly in each case. 

In order to illustrate the effect of g on the convergence rate we have calculated 
loglEb“’-Eb“’”l for the ground state of the quartic oscillator H,(O, 1) .  The best g 
value (gb) in this and in the other examples has been obtained approximately by 
numerical search. The convergence rate decreases noticeably as lg - g,l increases as 
shown in figure 1. This situation occurs in all the examples studied and reveals the 
great practical importance of finding a suitable basis set of functions. In most cases 
it is not necessary to calculate gb accurately because the convergence rate of the iterative 
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Figure 1. Convergence rate of the sequence E?' for H4(0, I )  for different values of the 
scaling parameter g. 

method is large enough provided (g - g,( < E where E depends on the problem. It is 
found that E decreases largely as A, k or n increases. Calculations show that the 
present procedure converges more quickly and for a larger range of g values than the 
perturbation method of Feranchuk and Komarov (1982) does (Fernindez et a1 1984). 
For example, in the case of the quartic oscillator (figure 1 )  the present technique 
converges for g = g, and even for the basis set of unscaled functions (g = 1). 

The lowest eigenvalues of H2k( 1, A )  and H,k(O, 1) ( k  = 2 ,3 ,  and 4) are shown in 
tables 1-6 together with gb and the number of iterations ( N )  required to make the last 
figure stable. (The number of basis vectors M is also large enough to assure stability 
of the results.) Present results agree with those obtained previously by Banerjee (1978) 
and Banerjee et a1 (1978). 

The convergence rate decreases markedly when A, n or k increases. Calculation 
for very large A values (say A > 100) is facilitated by taking into account that the 

Table 1. Eigenvalues of H4( I ,  A). 

A n g b  N E, (Banerjee 1978) 

IO-' o 
I 
2 
3 

1 0 
1 
2 
3 

1 oJ 0 
1 
2 
3 

1.000 074 986 880 200 
3.000 374 896 936 121 
5.000974615938386 
7.001 874 016 667 660 

1.392 351 641 530 292 

8.655 049 957 759 310 
4.648 81 2 704 212 078 

13.156 803 898 049 88 

22.861 608 870 272 47 
81.90331695328447 

160.685912611 711 5 
250.950 743 891 7 12 4 

1 .oo 2 
I .oo 2 
1 .oo 3 
1 .oo 3 

0.35 I 1  
0.35 11  
0.35 12 
0.35 12 

0.02 17 
0.02 18 
0.02 18 
0.02 19 

1.000 074 986 880 20 
3.000 374 896 936 12 
5.00097461593839 
7.001 874016667 66 

1.392 351 641 530 29 
4.648 812 704 212 08 
8.655 049 957 759 31 

13.1 56 803 898 049 9 

22.861 608 870 272 5 
81,903316953 2845 

160.685912611 712 
250.950 743 a91 713 
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Table 2. Eigenvalues of H6(l, A ) .  

A n E,  g b  N E, (Banerjee 1978) 

o 1.000 I87 228 153 681 1.00 3 1.000 187 228 153 68 
I 3.001 308 843 629 600 1.00 4 3.001 308 843 629 60 
2 5.004 664 71 1 299 977 1 .OO 5 5.004 664 7 1 1 299 98 
3 7.01 I 720 523 720 425 1.00 5 7.01 1 720 523 720 43 

1 0 1.435 624619 003 392 0.20 28 1.435 624 619 003 39 
1 5.033 395 937 720 267 0.20 27 5.033 395 937 720 27 
2 9.966621999718llO 0.20 31 9.966621999718 1 1  
3 15.989 440 787 825 73 0.22 49 15.989 440 787 825 7 

I o4 0 11.478 798 042 264 54 0.20 31 11.478 798 042 264 5 
1 43.457 784 742 680 45 0.20 27 43.457 784 742 680 4 
2 90.821 278 91 I 708 85 0.20 31 90.821 278 91 1 708 8 
3 149.457 970 316 336 I 0.23 74 149.457 970 316 336 

Table 3. Eigenvalues of Ha( 1, A). 

A n E" gb N E, (Banerjee 1978) 

 IO-^ o 
1 
2 
3 

1 0 
I 
2 

io4 o 
1 
2 

1.000 646 369 874 074 
3.005 726 955 351 208 
5.025 394969 087 810 
7.076 668 972 602 773 

1.491 019 895 662 205 
5.368 778 061 748 129 
10.993 737 335 502 95 

7.778272214311 099 
30.106900 557 858 13 
64.760 47 I 754 927 17 

0.85 
0.76 
0.70 
0.70 

0.120 
0.102 
0. I02 

0.120 
0.130 
0. I20 

I O  
12 
14 
19 

59 
72 
83 

68 
58 
59 

1.000 646 369 874 07 
3.005 726 955 35 I 21 
5.025 394 969 087 81 
7.076 668 972 602 77 

1.491 01989566221 
5.368 778 061 748 13 
10.993 737 335 503 0 

7.778 272 214 31 I 10 
30. IO6 900 557 858 I 
64.760 47 1 754 927 2 

Table 4. Eigenvalues of H,(O, 1). 

n E" g b  N E,, (Banerjee et al 1978) 

0 1.060 362 090 484 183 0.40 I3 1.060 362 090 484 18 
1 3.799 673 029 801 394 0.40 I5 3.799 673 029 801 39 
2 7.455 697 937 986 738 0.40 14 7.455 697 937 986 74 
3 11.644745511 378 16 0.40 17 11.644745511 3782 

Table 5. Eigenvalues of H6(0,  I ) .  

n E" g b  N 

0 1.144802453 797 053 0.20 29 
1 4.338 598 71 1 513 981 0.20 27 
2 9.073 084 560 921 433 0.20 35 
3 14.935 16963491074 0.22 95 
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Table 6. Eigenvalues of H,(O, I ) .  

n E" gb N 

0 1.225 820 1 I3 800 492 0.12 54 
I 4.755 874 413 960 76 0.13 5 5  
2 10.244 946 977 236 86 0.13 50 

eigenvalues of H 2 k (  1, A )  obey (Simon 1970) 

~ ~ ( 1 ,  A )  = A ' / ( ~ + ' ) E , ( A - ~ / ( ~ + ~ ) ,  1).  (18) 

The strategy is solving the secular equation for H2k(h-2'(k+l)  , 1)  to obtain the eigen- 
values of H 2 k (  1, A ) .  The improvement is due to the fact that the convergence rate for 
HZk(0, 1)  is large enough as shown in tables 4-6. 

Convergence depends most critically on k and n. For example, the sequences E'," 
and I,!I~) diverge when k = 4 and n > 2 unless A is small enough. Though there are 
several numerical techniques to improve convergence of iterative methods (Collatz 
1966, Ortega and Rheinboldt 1970, Dahlquist and Bjork 1974) we do not discuss them 
here because we are interested in keeping our procedure as simple as possible. Besides, 
the lowest states of the quantum mechanical models studied here are very important 
for many physical purposes and the iterative method applies successfully to them. 

The next example we consider is the double well potential model posed by the 
Hamiltonian operator H4( -Z2, 1)  = p 2  - Z 2 x 2  + x 4 .  The two lowest eigenvalues are 
shown in table 7 for several Z values. The convergence rate decreases markedly and 
g b  increases slowly as Z increases. The iterative procedure is divergent for z*> 10. 
Fortunately Z2 = 10 is large enough for many physical purposes. Convergence when 
5 < Z2 S 10 is assured by solving the secular equation for H4( - 1, Z-3). The eigenvalues 
of H 4 ( - Z 2 ,  1) are then obtained as E , ( - Z * ,  1)  = ZEn(-1, Z-3). Our results agree with 

Table 7. Eigenvalues of H4( - Z 2 ,  I )  = p 2  - Z 2 x Z +  x4. 

ZZ n En g b  N €.(Balsa et al 1983) 

0.5 0 0.870017518371 6121 0.4 1 5  0.870017518372 
I 3.333 779 329 887 006 0.4 19 3.333 779 329 89 

I 0 0.657 653 0 0 5  180 7150 0.4 16 0.657 653 005 191 
I 2.834 536 202 1 I9 304 0.4 15 2.834 536 202 12 

2 0 0.137 785 848 I88 2225 0.4 19 0.137 785 848 189 
I 1.713 027 897 767 676 0.4 15 1.713 027 897 77 

4 0 - I  .7 I O  350 450 132 640 0.4 32 -1.7l0350450 13 
1 - 1.247 922 492 066 2 1 5  0.4 25 - 1.247 922 492 07 

5 0 -3.410 I42 761 239 830 0.4 44 -3.410 I42 761 24 
1 -3.250 675 362 289 236 0.4 38 -3.250 675 362 29 

7 0 -8.671 105 208 704203 0.5 208 -8.671 I0520870 
I -8.662 452 224 881 444 0.5 199 -8.662 452 224 88 

I O  0 -20.633 576 702 947 80 0.5 324 -20.633 576 702 9 
I -20.633 546  884 404 92 0.5 300 -20.633 546 884 4 
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those obtained by Balsa et a1 (1983) who carried out a Rayleigh-Ritz calculation with 
a properly scaled basis set of eigenfunctions of the harmonic oscillator. The latter 
technique is preferable when results for Z 2  > 10 are required. 

4. Linear confining model 

The Hamiltonian operator H ( Z ,  A ) = f p 2  - Z /  r + A r  has received considerable atten- 
tion as a suitable model in particle physics (see, for example, Quigg and Rosner 1979, 
Eichten et a1 1978). The Schrodinger equation is most conveniently written as 

( i rp2  - Z+ h r 2 ) I q n )  = E n r l q n ) ,  (19) 

which is a particular case of ( 5 )  where A = irp2 - 2 + Ar2 and B = r. 
On obtaining an appropriate secular equation for this model it is convenient to 

write the operators A and B in terms of the three generators KO, K ,  = K ,  f iK2 of the 
SO(2, 1) Lie algebra which obey the following commutation relations: 

[KO, K*1= *K* ,  [ K- ,  K,] = 2 KO. (20) 

Q = K i - f ( K + K - +  K..K+). (21) 

The Casimir invariant is found to be 

We shall utilise the eigenvectors In, k )  of KO as our basis set: 

Koln, k )  = ( n  + k)ln, k ) ,  n = 0 , 1  2 , . . . ,  k > 0 .  

The Lie algebra is realised as 

KO = $( g - ’  rp2 + g r ) ,  

K 2  = r p - i ,  
K = f ( g - ’ rp2 - gr ) , 

in order to obtain a scaled basis set of states. Properly scaled basis set of functions 
proved to be very useful in many approximate calculations on central field quantum 
mechanical models (Lu and Nigam 1969, Gromes and Stamatescu 1979, Dias de Deus 
et a1 1981, Fernindez and Castro 1983b, Gerry and Silverman 1984) and in the present 
paper the scaling parameter g will be determined in order to obtain a large enough 
convergence rate. The way we introduce the scaling parameter g into the Schrodinger 
equation is simpler than, though entirely equivalent to, that of Gerry and Silverman 
(1983) who resorted to a unitary transformation of the operator r( H - E ) .  

In this case k = 1 + 1, where I = 0, 1, . . . , n - 1 is the angular momentum quantum 
number and n = 1,2, .  . . is the principal quantum number. The matrix elements for 
the operators A and B are easily obtained from (see Gerry and Silverman (1983) and 
references therein) 

Koln, 0 = n I n, 4, (24a) 

(24b) K,jn ,  I )  = i [ ( n  - I ) ( n  + I +  1 )]1’21n + 1 ,  I )  + $( n + I ) (  n - I - 1 )]‘’*ln - 1, I ) .  

Clearly A v = ( i , l ~ A ~ j , I ) = O  if l i - j l>2 and B v = ( i , I ~ B ~ j ,  1)=0 if l i - j / >  1. 
The lowest six eigenvalues of H ( 0 ,  1)  are shown in table 8. When I = 0 they are 

simply related to the zeros a, ( n  = 1,2, . . .) of the regular Airy function: EnO = -an/2’” 
(Abramowitz and Stegun 1970). Our results compare favourably with those obtained 
by numericai integration of the Schrodinger equation (Eichten er a1 1978). 
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Table 8. Eigenvalues of H ( 0 ,  1 )  =fp2+r.  

(n, 1 )  U p r e s e n t )  gb N E“, 

( I , O )  1.855757081 489239 0.852 35 1.855 757 08” 
(2,O) 3.244 607 624 003 159 0.889 212 3.244 607 62a 
(2, I )  2.667 829 482 852 616 0.612 52 2.6679b 
(3,O) 4.381 671 239 286 131 0.922 447 4.381 671 24a 
(3, I )  3.876 791 997 803 478 0.731 171 3.8768b 
(3,2) 3.371 784491 979 285 0.677 82 3.371 8b 

a Abramowitz and Stegun (1970). 
Eichten et a1 (1978). 

A difficulty arises when applying the method to H (  1, A ) .  Only those states with 
n = 1 + 1 are obtained for each 1 value disregarding the value set for n. However, this 
undesirable behaviour of the sequences E $ )  is easily removed by solving the secular 
equation iteratively for H ( A - ” 3 ,  1) and then obtaining the eigenvalues of H(1, A )  as 
&(l,  A )  = A2/3Enr(A-1/3, 1). This strategy is used only when n > 1 + 1 and the conver- 
gence rate of the sequences E $ ) ( A - ” 3 ,  1 )  and E$)(O, 1 )  are quite similar as shown in 

Table 9. Eigenvalues of If( 1, A )  = f p 2 -  I / r +  Ar.  

A (n, 1 )  E,, (present) gh N E,, 

500 

62.5 

(1,O) 108.365 810438 635 8 0.07 41 108.365 80“ 
(LO) 198.514307 1386060 0.72 139 
(2, 1 )  162.895 637 328 560 8 0.06 43 
(3,O) 271.273 083 062 621 6 0.92 441 
(3, I )  240.089 707 956 872 6 0.72 148 
(3,2) 208.513 378 897 178 9 0.06 38 

(130) 24.856 298 746 885 86 0.13 41 24.856 30” 
(290) 48.127 003 723 OS4 18 0.73 141 
(2, 1 )  39.409 253 950 OS2 92 0.11 52 
(3,O) 66.61389951328491 0.92 449 

(3,2) 5 I .  144 563 618 567 93 0.12 33 
(3, 1 )  58.977 740 052 241 80 0.72 159 

0.976 562 50 ( I , O )  0.556 763 812 860 182 9 0.40 33 0.556 767” 
(290) 2.405 052 980 059 900 0.72 125 
(2, I )  1.937 41 3 616 076 400 0.49 32 
(3,O) 3.692 879 407 153 785 0.92 432 
(3, 1 )  3.278 753 867 982 728 0.72 144 
(392) 2.814025 139978 173 0.47 29 

( 1 9 0 )  -0.428 119 973 006 343 9 0.9 1 I O  -0.428 120b 0.05 
( L O )  0.111 019874415 1106 0.72 123 
(2, I )  0.068731 817681 15994 0.99 12 
(3,O) 0.349 963 355 109 784 6 0.92 433 
(3, 1 )  0.310633 263431 2540 0.72 142 
(3,2) 0.255 536 883 OS6 485 7 0.987 26 

a Eichten er a1 (1978). 
Austin (1981). 
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tables 8 and 9. Our results are very accurate in the whole range of A values and 
compare favourably with those obtained by Eichten et al (1978) and Austin (1981) 
(also see Killingbeck 1981). 

5. Conclusions 

The iterative procedure presented in this paper is very simple and yields highly accurate 
eigenvalues with very little computation. When it is convergent, it seems to be preferable 
to any other technique. The eigenfunctions obtained this way must be as accurate as 
those coming from Rayleigh-Ritz calculations. The method applies succesfully also 
to many dimensional quantum mechanical systems such as coupled anharmonic oscil- 
lators as will be shown in a forthcoming paper. 
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