A simple iterative solution of the Schrodinger equation in matrix representation form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181389
(http://iopscience.iop.org/0305-4470/18/9/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:52

Please note that terms and conditions apply.

A simple iterative solution of the Schrödinger equation in matrix representation form

Francisco M Fernández, Alejandro M Mesón and Eduardo A Castro
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), División Química Teórica, Sucursal 4, Casilla de Correo 16, La Plata (1900), Argentina

Received 12 July 1984, in final form 8 October 1984

Abstract

A simple procedure for solving the Schrödinger equation is presented. It is based upon an iterative solution of the secular equation. A large enough convergence rate is obtained by using a basis set of properly scaled functions. The effect of the scaling parameter on the convergence rate is studied in order to improve the calculation. The method is applied to simple, though non-trivial, quantum mechanical models such as the quartic, sextic and octic anharmonic oscillators, a double well potential, and the linear confining potential. Highly accurate eigenvalues for all values of the coupling parameter are obtained.

1. Introduction

Burrows and Core (1984) have recently applied a technique for solving nonlinear operator equations iteratively to quantum mechanical calculations. To this end the Schrödinger equation is written as

$$
\begin{equation*}
T \Psi=f(\Psi) \tag{1}
\end{equation*}
$$

where Ψ belongs to the domain of a self-adjoint operator T and T^{-1} exists. In general $f(\Psi)$ may be nonlinear.

On solving (1) the related sequence of equations

$$
\begin{equation*}
T \psi^{(s+1)}=f\left(\psi^{(s)}\right), \tag{2}
\end{equation*}
$$

is tried, where

$$
\begin{equation*}
\psi^{(s)}=e_{0}+\sum_{i=1}^{N(s)} a_{i}^{(s)} e_{i}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle e_{i} \mid T e_{j}\right\rangle=\alpha_{i} \delta_{i j}, \quad\left(\alpha_{i}>0\right) \tag{4}
\end{equation*}
$$

The sequence of functions $\psi^{(s)}$ is supposed to converge towards Ψ as $s \rightarrow \infty$ (see Burrows and Core (1984) and references therein for a more detailed discussion).

Burrows and Core (1984) rearranged the Schrödinger equation in different ways and studied the effect of different choices for $f(\psi)$ and $N(s)$ on the convergence rate. However, they have not considered the influence of the basis set of functions which is of great practical importance.

In the present paper a modified version of the iterative technique proposed by Burrows and Core (1984) is applied to some quantum mechanical problems of physical
interest. A basis set of properly scaled functions is used and the effect of the scaling parameter on the convergence rate is studied. The method is developed in § 2 . In § 3 it is applied to the anharmonic oscillators and to a double well potential model. The linear confining potential is discussed in §4. In all the cases we go further than Burrows and Core (1984) did and study excited states in addition to the ground state.

2. The method

Our goal is to solve the eigenvalue equation

$$
\begin{equation*}
A\left|\Psi_{n}\right\rangle=E_{n} B\left|\Psi_{n}\right\rangle, \tag{5}
\end{equation*}
$$

where A and B are two self-adjoint operators. To this end we expand the eigenvector $\left|\Psi_{n}\right\rangle$ in a basis set of orthonormal vectors $|i\rangle$

$$
\begin{equation*}
\left|\Psi_{n}\right\rangle=\sum_{i=0}^{\infty} c_{i n}|i\rangle . \tag{6}
\end{equation*}
$$

The coefficients $c_{i n}$ are solutions of the secular equation

$$
\begin{equation*}
\sum_{i} A_{j i} c_{i n}=E_{n} \sum_{i} B_{j l} c_{i n}, \quad j=0,1, \ldots \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j}=\langle i| A|j\rangle, \quad B_{i j}=\langle i| B|j\rangle \tag{8}
\end{equation*}
$$

Notice that (5) becomes a nonlinear equation like (1) by setting $E_{n}=$ $\langle n| A\left|\Psi_{n}\right\rangle /\langle n| B\left|\Psi_{n}\right\rangle$. This choice proves to be convenient when $|n\rangle$ is an acceptable approximation to $\left|\Psi_{n}\right\rangle$. In the following sections we show how to obtain an appropriate basis set of vectors for some problems of physical interest.

If $c_{n n}$ is arbitrarily set equal to unity we can rewrite (7) as

$$
\begin{equation*}
E_{n}=\left(B_{n n}+\sum_{i \neq n} B_{n i} c_{i n}\right)^{-1}\left(A_{n n}+\sum_{i \neq n} A_{n i} c_{i n}\right) \tag{9}
\end{equation*}
$$

when $j=n$ and

$$
\begin{equation*}
c_{j n}=\left(A_{j j}-E_{n} B_{j j}\right)^{-1} \sum_{i \neq j}\left(E_{n} B_{j i}-A_{j i}\right) c_{i n} \tag{10}
\end{equation*}
$$

when $j \neq n$. Equations (9) and (10) are easily solved by iteration provided that $E_{n} \neq A_{j j} / B_{j j}$ for all $j \neq n$ during the process. Notice that (7) is also the secular equation for $H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$ when $\left|\Psi_{n}\right\rangle$ is expanded in a non-orthogonal basis set of vectors $|i\rangle$. In this case $A_{i j}=\langle i| H|j\rangle$ and $B_{i j}=\langle i \mid j\rangle$.

The success of the method may strongly depend on the starting point. A sensible choice appears to be

$$
\begin{equation*}
c_{i n}^{(0)}=\delta_{i n}, \quad E_{n}^{(0)}=A_{n n} / B_{n n}, \tag{11}
\end{equation*}
$$

which is based upon the assumption that $|n\rangle$ is a close enough approach to $\left|\Psi_{n}\right\rangle$. Instead of using the coefficients $c_{i n}^{(s)}$ obtained in the s th step to calculate $c_{j n}^{(s+1)}$, as suggested by (2) and (3), it is easier, from a computational viewpoint, to operate
according to the Gauss-Seidel iterative scheme:

$$
\begin{gather*}
E_{n}^{(s)}=\left(B_{n n}+\sum_{i \neq n} B_{n i} c_{i n}^{(s)}\right)^{-1}\left(A_{n n}+\sum_{i \neq n} A_{n i} c_{i n}^{(s)}\right), \tag{12a}\\
c_{j n}^{(s+1)}=\left(A_{j j}-E_{n}^{(s)} B_{j j}\right)^{-1}\left(\sum_{i<j}\left(E_{n}^{(s)} B_{j i}-A_{j i}\right) c_{i n}^{(s+1)}+\sum_{i>j}\left(E_{n}^{(s)} B_{j i}-A_{j i}\right) c_{i n}^{(s)}\right), \tag{12b}
\end{gather*}
$$

which proves to converge more quickly (Kuo 1965). The main advantage of doing the Rayleigh-Ritz calculation iteratively is that roundoff errors only occur at the final iteration whereas the usual eigenvalue techniques can be subject to a cumulation of errors.

Though (9) and (10) are also the starting point of the Brillouin-Wigner perturbation formula (Morse and Feshbach 1953) the present approach differs from that in the way the iterative process is performed.

When $A_{i j}=0$ for $|i-j|>I$ and $B_{i j}=0$ for $|i-j|>J$ we can write the right-hand side of (12) explicitly and treat $A_{i j}$ and $B_{i j}$ as mere numbers instead of as elements of matrices. In such a case much less memory space is required since only the vector ($c_{1 n}, c_{2 n}, \ldots$) is to be stored up. On the other hand, in the usual eigenvalue techniques it is mandatory to store up the matrices $A_{i j}$ and $B_{i j}$. Besides, the iterative procedure can also be used to produce analytical expressions for both the eigenvalues and eigenfunctions. Notice that the number of non-vanishing coefficients increases by a fixed amount in each iteration step. In general our sth approximation to the wavefunction $\left|\Psi_{n}\right\rangle$ will be

$$
\begin{equation*}
\left|\Psi_{n}^{(s)}\right\rangle=|n\rangle+\sum_{i=0}^{M} c_{i n}^{(s)}|i\rangle \tag{13}
\end{equation*}
$$

where M and the maximum $s(=N)$ value are determined so that results do not change when they are increased. If the secular equation (7) is a three-term recursion relationship ($I=J=1$), the present procedure is similar, though not exactly equivalent step by step, to the continued fraction calculation.

The iterative technique requires a good deal less computational work than the Rayleigh-Schrödinger perturbation theory does and it will be shown later on that the former converges where the latter does not.

In this paper we do not determine rigorously the general conditions under which the iterative method is convergent. However, we will show that it actually converges at least for the low-lying eigenvalues of a number of quantum mechanical models. In addition to this, the effect of the chosen basis set of vectors $|i\rangle$ on the convergence is studied.

3. Anharmonic oscillators and double well potentials

The first example we study in this paper is the Schrödinger equation for the onedimensional Hamiltonian operator
$H_{2 k}\left(\omega^{2}, \lambda\right)=p^{2}+\omega^{2} x^{2}+\lambda x^{2 k}, \quad p=-\mathrm{id} / \mathrm{d} x, \quad k=2,3, \ldots$,
which represents a $2 k$-anharmonic oscillator when $\omega^{2}>0$ and a double well potential when $\omega^{2}<0$. There has been great interest in these models partly due to their applications in quantum mechanics and field theory but mainly because of the singularities
of the eigenvalues of the $2 k$-anharmonic oscillators in the complex λ plane which account for the divergence of the perturbation series in powers of λ (Bender and Wu 1969, Simon 1970).

In studying the aforementioned models it is convenient to write the Hamiltonian operator (14) in second quantised form through the introduction of creation and annihilation operators a^{+}and a,
$x=(g / 2)^{1 / 2}\left(a+a^{\dagger}\right), \quad p=\mathrm{i}(2 g)^{-1 / 2}\left(a^{\dagger}-a\right), \quad\left[a^{\dagger}, a\right]=1$.
The real, positive parameter g enables one to improve convergence as will be shown later on.

Our basis set of vectors $|i\rangle$ will be composed of the complete set of eigenvectors of the particle number operator $a^{\dagger} a$. This choice is equivalent to using a set of scaled harmonic oscillator eigenfunctions which has proved to be very useful in obtaining analytic expressions for the eigenvalues of the Hamiltonian operator (14) (McWeeny and Coulson 1948, Banerjee 1978, Dias de Deus 1982, Fernández and Castro 1983a). When g is determined according to variational principles,

$$
\begin{equation*}
\left(\partial H_{n n} / \partial g\right)\left(g=g_{v}\right)=0, \tag{16}
\end{equation*}
$$

the scaled trial functions obey the virial theorem (Fock 1930, Löwdin 1959). Besides, the basis set of scaled functions built this way has also proved to be suitable for Rayleigh-Ritz calculations (Lu and Nigam 1969, Reid 1970, Balsa et al 1983) and for other non-perturbative approaches (Banerjee 1978, Banerjee et al 1978). The major attraction of the variational condition (16) is that $H_{n n}(g)$ is given a dependence on n (quantum number) and λ that closely resembles the exact one (McWeeny and Coulson 1948, Banerjee 1978, Dias de Deus 1982, Fernández and Castro 1982a).

If H is split into a zeroth-order operator H_{0} containing all the terms that commute with $a^{+} a$ and a perturbation $V=H-H_{0}$, we are led to a recently developed and quite promising variational perturbative scheme (Feranchuk and Komarov 1982, Gerry and Silverman 1983, Yamazaki 1984). If $g=g_{v}$ a very few perturbation terms yield quite accurate results. However, it has been recently shown that the use of g_{v} is not convenient wheh large-order perturbation calculations are required because it leads to divergent power series (Fernández et al 1984). A numerical investigation has revealed that there is an interval of g values for each λ and n leading to convergent series and that g_{v} usually lies outside it (Fernández et al 1984). This fact will be exploited in the present paper to make the iterative procedure converge quickly enough.

In order to obtain the matrix elements $H_{i j}$ we first put the Hamiltonian operator (14) in second quantised form and then make use of the well known relationships

$$
\begin{equation*}
a|i\rangle=i^{1 / 2}|i-1\rangle, \quad a^{+}|i\rangle=(i+1)^{1 / 2}|i+1\rangle . \tag{17}
\end{equation*}
$$

On doing it we are led to a particular case of (7) where $A_{i j}=H_{i j}$ and $B_{i j}=\delta_{i j}$. Notice that $H_{i j}=0$ if $|i-j|>2 k$. Since the calculation of the matrix elements is straightforward, it is not necessary to give them explicitly in each case.

In order to illustrate the effect of g on the convergence rate we have calculated $\log \left|E_{0}^{(s)}-E_{0}^{(s+1)}\right|$ for the ground state of the quartic oscillator $H_{4}(0,1)$. The best g value (g_{b}) in this and in the other examples has been obtained approximately by numerical search. The convergence rate decreases noticeably as $\left|g-g_{b}\right|$ increases as shown in figure 1. This situation occurs in all the examples studied and reveals the great practical importance of finding a suitable basis set of functions. In most cases it is not necessary to calculate g_{b} accurately because the convergence rate of the iterative

Figure 1. Convergence rate of the sequence $E_{0}^{(5)}$ for $H_{4}(0,1)$ for different values of the scaling parameter g.
method is large enough provided $\left|g-g_{b}\right|<\varepsilon$ where ε depends on the problem. It is found that ε decreases largely as λ, k or n increases. Calculations show that the present procedure converges more quickly and for a larger range of g values than the perturbation method of Feranchuk and Komarov (1982) does (Fernández et al 1984). For example, in the case of the quartic oscillator (figure 1) the present technique converges for $g=g_{v}$ and even for the basis set of unscaled functions ($g=1$).

The lowest eigenvalues of $H_{2 k}(1, \lambda)$ and $H_{2 k}(0,1)(k=2,3$, and 4) are shown in tables 1-6 together with g_{b} and the number of iterations (N) required to make the last figure stable. (The number of basis vectors M is also large enough to assure stability of the results.) Present results agree with those obtained previously by Banerjee (1978) and Banerjee et al (1978).

The convergence rate decreases markedly when λ, n or k increases. Calculation for very large λ values (say $\lambda>100$) is facilitated by taking into account that the

Table 1. Eigenvalues of $H_{4}(1, \lambda)$.

λ	n	E_{n}	g_{b}	N	E_{n} (Banerjee 1978)
10^{-4}	0	1.000074986880200	1.00	2	1.00007498688020
	1	3.000374896936121	1.00	2	3.00037489693612
	2	5.000974615938386	1.00	3	5.00097461593839
	3	7.001874016667660	1.00	3	7.00187401666766
1	0	1.392351641530292	0.35	11	1.39235164153029
	1	4.648812704212078	0.35	11	4.64881270421208
	2	8.655049957759310	0.35	12	8.65504995775931
	3	13.15680389804988	0.35	12	13.1568038980499
10^{4}	0	22.86160887027247	0.02	17	22.8616088702725
	1	81.90331695328447	0.02	18	81.9033169532845
	2	160.6859126117115	0.02	18	160.685912611712
	3	250.9507438917124	0.02	19	250.950743891713

Table 2. Eigenvalues of $H_{6}(1, \lambda)$.

λ	n	E_{n}	g_{b}	N	E_{n} (Banerjee 1978)
10^{-4}	0	1.000187228153681	1.00	3	1.00018722815368
	1	3.001308843629600	1.00	4	3.00130884362960
	2	5.004664711299977	1.00	5	5.00466471129998
	3	7.011720523720425	1.00	5	7.01172052372043
1	0	1.435624619003392	0.20	28	1.43562461900339
	1	5.033395937720267	0.20	27	5.03339593772027
	2	9.966621999718110	0.20	31	9.96662199971811
	3	15.98944078782573	0.22	49	15.9894407878257
10^{4}	0	11.47879804226454	0.20	31	11.4787980422645
	1	43.45778474268045	0.20	27	43.4577847426804
	2	90.82127891170885	0.20	31	90.8212789117088
	3	149.4579703163361	0.23	74	149.457970316336

Table 3. Eigenvalues of $H_{8}(1, \lambda)$.

λ	n	E_{n}	g_{b}	N	E_{n} (Banerjee 1978)
10^{-4}	0	1.000646369874074	0.85	10	1.00064636987407
	1	3.005726955351208	0.76	12	3.00572695535121
	2	5.025394969087810	0.70	14	5.02539496908781
	3	7.076668972602773	0.70	19	7.07666897260277
1	0	1.491019895662205	0.120	59	1.49101989566221
	1	5.368778061748129	0.102	72	5.36877806174813
	2	10.99373733550295	0.102	83	10.9937373355030
10^{4}	0	7.778272214311099	0.120	68	7.77827221431110
	1	30.10690055785813	0.130	58	30.1069005578581
	2	64.76047175492717	0.120	59	64.7604717549272

Table 4. Eigenvalues of $H_{4}(0,1)$.

n	E_{n}	g_{b}	N	E_{n} (Banerjee et al 1978)
0	1.060362090484183	0.40	13	1.06036209048418
1	3.799673029801394	0.40	15	3.79967302980139
2	7.455697937986738	0.40	14	7.45569793798674
3	11.64474551137816	0.40	17	11.6447455113782

Table 5. Eigenvalues of $H_{6}(0,1)$.

n	E_{n}	g_{b}	N
0	1.144802453797053	0.20	29
1	4.338598711513981	0.20	27
2	9.073084560921433	0.20	35
3	14.93516963491074	0.22	95

Table 6. Eigenvalues of $H_{8}(0,1)$.

n	E_{n}	g_{b}	N
0	1.225820113800492	0.12	54
1	4.75587441396076	0.13	55
2	10.24494697723686	0.13	50

eigenvalues of $H_{2 k}(1, \lambda)$ obey (Simon 1970)

$$
\begin{equation*}
E_{n}(1, \lambda)=\lambda^{1 /(k+1)} E_{n}\left(\lambda^{-2 /(k+1)}, 1\right) . \tag{18}
\end{equation*}
$$

The strategy is solving the secular equation for $H_{2 k}\left(\lambda^{-2 /(k+1)}, 1\right)$ to obtain the eigenvalues of $H_{2 k}(1, \lambda)$. The improvement is due to the fact that the convergence rate for $H_{2 k}(0,1)$ is large enough as shown in tables 4-6.

Convergence depends most critically on k and n. For example, the sequences $E_{n}^{(s)}$ and $\psi_{n}^{(s)}$ diverge when $k=4$ and $n>2$ unless λ is small enough. Though there are several numerical techniques to improve convergence of iterative methods (Collatz 1966, Ortega and Rheinboldt 1970, Dahlquist and Björk 1974) we do not discuss them here because we are interested in keeping our procedure as simple as possible. Besides, the lowest states of the quantum mechanical models studied here are very important for many physical purposes and the iterative method applies successfully to them.

The next example we consider is the double well potential model posed by the Hamiltonian operator $H_{4}\left(-Z^{2}, 1\right)=p^{2}-Z^{2} x^{2}+x^{4}$. The two lowest eigenvalues are shown in table 7 for several Z values. The convergence rate decreases markedly and g_{b} increases slowly as Z increases. The iterative procedure is divergent for $Z^{2}>10$. Fortunately $Z^{2}=10$ is large enough for many physical purposes. Convergence when $5<Z^{2} \leqslant 10$ is assured by solving the secular equation for $H_{4}\left(-1, Z^{-3}\right)$. The eigenvalues of $H_{4}\left(-Z^{2}, 1\right)$ are then obtained as $E_{n}\left(-Z^{2}, 1\right)=Z E_{n}\left(-1, Z^{-3}\right)$. Our results agree with

Table 7. Eigenvalues of $H_{4}\left(-Z^{2}, 1\right)=p^{2}-Z^{2} x^{2}+x^{4}$.

Z^{2}	n	E_{n}	g_{b}	N	E_{n} (Balsa et al 1983)
0.5	0	0.8700175183716121	0.4	15	0.870017518372
	1	3.333779329887006	0.4	19	3.33377932989
1	0	0.6576530051807150	0.4	16	0.657653005191
	1	2.834536202119304	0.4	15	2.83453620212
2	0	0.1377858481882225	0.4	19	0.137785848189
	1	1.713027897767676	0.4	15	1.71302789777
4	0	-1.710350450132640	0.4	32	-1.71035045013
	1	-1.247922492066215	0.4	25	-1.24792249207
5	0	-3.410142761239830	0.4	44	-3.41014276124
	1	-3.250675362289236	0.4	38	-3.25067536229
7	0	-8.671105208704203	0.5	208	-8.67110520870
	1	-8.662452224881444	0.5	199	-8.66245222488
10	0	-20.63357670294780	0.5	324	-20.6335767029
	1	-20.63354688440492	0.5	300	-20.6335468844

those obtained by Balsa et al (1983) who carried out a Rayleigh-Ritz calculation with a properly scaled basis set of eigenfunctions of the harmonic oscillator. The latter technique is preferable when results for $Z^{2}>10$ are required.

4. Linear confining model

The Hamiltonian operator $H(Z, \lambda)=\frac{1}{2} p^{2}-Z / r+\lambda r$ has received considerable attention as a suitable model in particle physics (see, for example, Quigg and Rosner 1979, Eichten et al 1978). The Schrödinger equation is most conveniently written as

$$
\begin{equation*}
\left(\frac{1}{2} r p^{2}-Z+\lambda r^{2}\right)\left|\Psi_{n}\right\rangle=E_{n} r\left|\Psi_{n}\right\rangle, \tag{19}
\end{equation*}
$$

which is a particular case of (5) where $A=\frac{1}{2} r p^{2}-Z+\lambda r^{2}$ and $B=r$.
On obtaining an appropriate secular equation for this model it is convenient to write the operators A and B in terms of the three generators $K_{0}, K_{ \pm}=K_{1} \pm \mathrm{i} K_{2}$ of the $\mathrm{SO}(2,1)$ Lie algebra which obey the following commutation relations:

$$
\begin{equation*}
\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm}, \quad\left[K_{-}, K_{+}\right]=2 K_{0} \tag{20}
\end{equation*}
$$

The Casimir invariant is found to be

$$
\begin{equation*}
Q=K_{0}^{2}-\frac{1}{2}\left(K_{+} K_{-}+K_{-.} K_{+}\right) . \tag{21}
\end{equation*}
$$

We shall utilise the eigenvectors $|n, k\rangle$ of K_{0} as our basis set:

$$
\begin{equation*}
K_{0}|n, k\rangle=(n+k)|n, k\rangle, \quad n=0,12, \ldots, k>0 . \tag{22}
\end{equation*}
$$

The Lie algebra is realised as

$$
\begin{align*}
& K_{0}=\frac{1}{2}\left(g^{-1} r p^{2}+g r\right), \quad K_{1}=\frac{1}{2}\left(g^{-1} r p^{2}-g r\right), \tag{23a,b}\\
& K_{2}=r \cdot p-i \tag{23c}
\end{align*}
$$

in order to obtain a scaled basis set of states. Properly scaled basis set of functions proved to be very useful in many approximate calculations on central field quantum mechanical models (Lu and Nigam 1969, Gromes and Stamatescu 1979, Dias de Deus et al 1981, Fernández and Castro 1983b, Gerry and Silverman 1984) and in the present paper the scaling parameter g will be determined in order to obtain a large enough convergence rate. The way we introduce the scaling parameter g into the Schrödinger equation is simpler than, though entirely equivalent to, that of Gerry and Silverman (1983) who resorted to a unitary transformation of the operator $r(H-E)$.

In this case $k=l+1$, where $l=0,1, \ldots, n-1$ is the angular momentum quantum number and $n=1,2, \ldots$ is the principal quantum number. The matrix elements for the operators A and B are easily obtained from (see Gerry and Silverman (1983) and references therein)

$$
\begin{gather*}
K_{0}|n, l\rangle=n|n, l\rangle \tag{24a}\\
\left.K_{1}|n, l\rangle=\frac{1}{2}[(n-l)(n+l+1)]^{1 / 2}|n+1, l\rangle+\frac{1}{2}(n+l)(n-l-1)\right]^{1 / 2}|n-1, l\rangle . \tag{24b}
\end{gather*}
$$

Clearly $A_{i j}=\langle i, l| A|j, l\rangle=0$ if $|i-j|>2$ and $B_{i j}=\langle i, l| B|j, l\rangle=0$ if $|i-j|>1$.
The lowest six eigenvalues of $H(0,1)$ are shown in table 8 . When $l=0$ they are simply related to the zeros $a_{n}(n=1,2, \ldots)$ of the regular Airy function: $E_{n 0}=-a_{n} / 2^{1 / 3}$ (Abramowitz and Stegun 1970). Our results compare favourably with those obtained by numerical integration of the Schrödinger equation (Eichten et al 1978).

Table 8. Eigenvalues of $H(0,1)=\frac{1}{2} p^{2}+r$.

(n, l)	$E_{n l}$ (present)	g_{b}	N	$E_{n l}$
$(1,0)$	1.855757081489239	0.852	35	1.85575708^{a}
$(2,0)$	3.244607624003159	0.889	212	3.24460762^{a}
$(2,1)$	2.667829482852616	0.612	52	2.6679^{b}
$(3,0)$	4.381671239286131	0.922	447	4.38167124^{a}
$(3,1)$	3.876791997803478	0.731	171	3.8768^{b}
$(3,2)$	3.371784491979285	0.677	82	3.3718^{b}

${ }^{2}$ Abramowitz and Stegun (1970).
${ }^{\mathrm{b}}$ Eichten et al (1978).

A difficulty arises when applying the method to $H(1, \lambda)$. Only those states with $n=l+1$ are obtained for each l value disregarding the value set for n. However, this undesirable behaviour of the sequences $E_{n!}^{(s)}$ is easily removed by solving the secular equation iteratively for $H\left(\lambda^{-1 / 3}, 1\right)$ and then obtaining the eigenvalues of $H(1, \lambda)$ as $E_{n 1}(1, \lambda)=\lambda^{2 / 3} E_{n l}\left(\lambda^{-1 / 3}, 1\right)$. This strategy is used only when $n>l+1$ and the convergence rate of the sequences $E_{n l}^{(s)}\left(\lambda^{-1 / 3}, 1\right)$ and $E_{n l}^{(s)}(0,1)$ are quite similar as shown in

Table 9. Eigenvalues of $H(1, \lambda)=\frac{1}{2} p^{2}-1 / r+\lambda r$.

λ	(n, l)	$E_{n l}$ (present)	$g_{\text {b }}$	N	$E_{n l}$
500	$(1,0)$	108.3658104386358	0.07	41	$108.36580^{\text {a }}$
	$(2,0)$	198.5143071386060	0.72	139	
	$(2,1)$	162.8956373285608	0.06	43	
	$(3,0)$	271.2730830626216	0.92	441	
	$(3,1)$	240.0897079568726	0.72	148	
	$(3,2)$	208.5133788971789	0.06	38	
62.5	$(1,0)$	24.85629874688586	0.13	41	$24.85630^{\text {a }}$
	$(2,0)$	48.12700372305418	0.73	141	
	$(2,1)$	39.40925395005292	0.11	52	
	$(3,0)$	66.61389951328491	0.92	449	
	$(3,1)$	58.97774005224180	0.72	159	
	$(3,2)$	51.14456361856793	0.12	33	
0.97656250	$(1,0)$	0.5567638128601829	0.40	33	$0.556767^{\text {a }}$
	$(2,0)$	2.405052980059900	0.72	125	
	$(2,1)$	1.937413616076400	0.49	32	
	$(3,0)$	3.692879407153785	0.92	432	
	$(3,1)$	3.278753867982728	0.72	144	
	$(3,2)$	2.814025139978173	0.47	29	
0.05	$(1,0)$	-0.4281199730063439	0.91	10	$-0.428120^{\text {b }}$
	$(2,0)$	0.1110198744151106	0.72	123	
	$(2,1)$	0.06873181768115994	0.99	12	
	$(3,0)$	0.3499633551097846	0.92	433	
	$(3,1)$	0.3106332634312540	0.72	142	
	$(3,2)$	0.2555368830564857	0.987	26	

[^0]tables 8 and 9 . Our results are very accurate in the whole range of λ values and compare favourably with those obtained by Eichten et al (1978) and Austin (1981) (also see Killingbeck 1981).

5. Conclusions

The iterative procedure presented in this paper is very simple and yields highly accurate eigenvalues with very little computation. When it is convergent, it seems to be preferable to any other technique. The eigenfunctions obtained this way must be as accurate as those coming from Rayleigh-Ritz calculations. The method applies succesfully also to many dimensional quantum mechanical systems such as coupled anharmonic oscillators as will be shown in a forthcoming paper.

Acknowledgments

The INIFTA is sponsored by the Universidad Nacional de La Plata, the Consejo Nacional de Investigaciones Cientificas y Técnicas and the Comisión de Investigaciones Cientificas de la Provincia de Buenos Aires.

References

Abramowitz N and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover) p 478 Austin E J 1981 Mol. Phys. 421391
Balsa R, Plo M, Esteve J G and Pacheco A F 1983 Phys. Rev. D 281945
Banerjee K 1978 Proc. R. Soc. A 364265
Banerjee K, Bhatnagar S P, Choudhry V and Kanwal S S 1978 Proc. R. Soc. A 360575
Bender C M and Wu T T 1969 Phys. Rev. 184 1231
Burrows B L and Core P W 1984 J. Phys. A: Math. Gen. 17559
Collatz L 1966 Functional Analysis and Numerical Mathematics (New York: Academic)
Dahlquist G and Björck A 1974 Numerical Methods (Englewood Clifs, NJ: Frentice Hall)
Dias de Deus J 1982 Phys. Rev. D 262782
Dias de Deus J, Henriques A B and Pulido J M R 1981 Z. Phys. C 7157
Eichten E, Gottfried K, Kinoshita T, Lane K D and Yan F M 1978 Phys. Rev. D 173090
Feranchuk I D and Komarov L I 1982 Phys. Lett. 88A 211
Fernández F M and Castro E A 1983a Phys. Rev. A 27663

- 1983b J. Chem. Phys. 79321

Fernández F M, Mesón A M and Castro E A 1984 Phys. Lett. 104A 401
Fock V 1930 Z. Phys. 63855
Gerry C C and Silverman S J 1983 Phys. Lett. 95A 481

- 1984 Phys. Rev. A 291574

Gromes D and Stamatescu I O 1979 Z. Phys. C 343
Killingbeck J 1981 J. Phys. A: Math Gen. 141005
Kuo S S 1965 Numerical Methods and Computers (Reading, Mass.: Addison-Wesley) pp 178-81
Löwdin P O 1959 J. Mol. Spectrosc. 346
Lu P and Nigam B P 1969 J. Phys. B: At. Mol. Phys. 2647
McWeeny R and Coulson C A 1948 Proc. Camb. Phil. Soc. 44413
Morse P M and Feshbach H 1953 Methods of Theoretical Physics vol 2 (New York: McGraw-Hill) pp 1001-10
Ortega J M and Rheinboldt W F 1970 Iterative Solution of Non-Linear Equations in General Variables (London: Academic)
Quigg C and Rosner J L 1979 Phys. Rep. C 56169
Reid C E 1970 J. Mol. Spectrosc. 36183
Simon B 1970 Ann. Phys., NY 5879
Yamazaki K 1984 J. Phys. A: Math. Gen. 17345

[^0]: ${ }^{2}$ Eichten et al (1978).
 ${ }^{6}$ Austin (1981).

